SHORT COMMUNICATIONS

Acta Cryst. (1961). 14, 535

535

A simplified formula for the calculation of the X-ray intensity diffracted by a monodimen-
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Leonardo da Vinei 32, Milano, Italy
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We have been recently concerned with the calculation
of the X-ray intensity diffracted by different models of
structures showing disorder with s=1 in the stacking of
layers. An example is severely ground « (Natta ef al,
1958) or y (Natta et al., 1959) TiCl;. In the course of
our study, we have found a simplified formula for the
calculation of the mean intensity diffracted by a single
layer.
Mean diffracted intensity is given by:
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where:

r is the different layers;
f® is the frequency of occurrence of the layer of
sth kind;

V@) is the structure factor of the layer of ith kind;
Qx is the matrix whose (¢, ) element is given by the
product P exp [ —ig\y’], P’ being the probability
for a layer of the kind % to be followed by a Kth
neighbour of the kind j, and exp [—¢%¥] the
corresponding fringe factor.
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According to Hendricks & Teller (1942), (1) reduces to:
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where Q) are the eigenvalues of Q,, reduced to diagonal
form by the similarity operation 0Q,0, and R are
the diagonal elements of the matrix OVFO-!, with
V@) = VAV * and FG) =§(i5)f(i),

It may be possible that the matrix Q, cannot be
diagonalized, if its eigenvalues are not all different and
if Q, is not symmetrical.

A new formula for I 4y, subjected to no conditions of

Acta Cryst. (1961). 14, 535

the above type, and simpler than (2), may be derived
from (1) in the following way.
Let V be the row vector:

V). .. V)., V@O

and V the corresponding column vector. Remembering
that Q, =QZX, (1) reduces to:
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But (QX)G@), in the limit of K — oo, is generally
vanishing in whatever statistical structure. Then (3)
reduces to:
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The only lengthy step in the calculation of I 4y through
(4) is the evaluation of (E —Q;)~'; whereas the calcula-
tion of I 4y through (2) requires the diagonalization of Q,,
which is not always possible, and the lengthy evaluation
of O, O, OVFO-.

I wish to thank Prof. G. Natta for the encouragement
he has given me in this study.
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Recently a new class of magnetic structures, the hel-
ical spin structures, has been discussed theoretically
(Yoshimori, 1959; Villain, 1959), and a number of ex-
perimental examples, for instance in MnAu, (Herpin et al.,
1959) and in metallic holmium (Koehler et al., 1960)
has been discovered in neutron diffraction experiments.
A simple helical structure may be described as follows:
let the ideal lattice sites of the chemical unit cell be
described by ry+Ar and let us suppose that at each

such lattice site is found a magnetic moment uKf such

that all moments make the same constant projection on
some crystal direction defined by the unit vector %j;
that is to say, the moment directions are assumed to be

iven b -
given by K[ =cos pti, +sin pif, (1)

where 4} is a unit vector normal to %; and B is the
constant angle between the moment directions and ,.
It is further assumed that the directions 4 are described
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